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Abstract

The free vibration analysis of a laminated composite cylindrical shell with an interior rectangular plate is
performed by the analytical and experimental methods. The frequency equations of vibration of the shell
including the plate are formulated by using the receptance method. To obtain the free vibration
characteristics before the combination of two structures, the energy principle based on the classical plate
theory and Love’s thin shell theory is adopted. The numerical results are compared with the results from an
experiment, as well as a finite element analysis, to validate the current formulation. The influences of the
length-to-radius ratio ðLS=aÞ and radius-to-thickness ratio ða=hSÞ of the shell and fiber orientation angles
(Y) of symmetric cross- and angle-ply composite materials on the natural frequencies of a cylindrical
laminated combined shell are also discussed in details.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The cylindrical shells are often used in many structures, such as aerospace, marine, fuel tank
and nuclear engineering applications. However, the actual structures in the engineering fields are
combinations of basic elements such as beams, plates and shells. For example, an aircraft fuselage
or a section of the submarine hull with a floor structure may be idealized as a combined shell of
the plate and shell. When the plate and shell are jointed, the free vibration characteristics of these
structures have a difference with those of simple components, and those are useful for the design
of shell structures under various static and dynamic loads. In recent year, fiber reinforced
composite materials have many industrial applications because of their advantages of high specific
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stiffness and specific strength properties. Thus, it is necessary to obtain the information about the
vibrations of the laminated composite cylindrical shells with an interior rectangular plate.

The study of the vibrations for the composite cylindrical shells has been reported by many
researchers [1–5]. They have studied the effects of various parameters such as boundary
conditions, aspect ratios, fiber orientation angles and material properties of the composite shells
on the vibration characteristics. But only several researchers investigated the vibrations of the
combined shell with an interior plate. Peterson and Boyd [6] developed the analytical approach by
using the Rayleigh–Ritz method to study the free vibration of a circular cylindrical shell
partitioned by an interior rectangular plate. This paper was presented the effects of several
parameters such as joint conditions between the plate and the shell, thickness of the structure and
the position of the plate on the frequencies and the mode shapes of the combined shell. Irie et al.
[7] studied the free vibration of non-circular cylindrical shells with longitudinal interior partitions
by using the transfer matrix. Langley [8] applied a dynamic stiffness technique for the vibration
analysis of a simply supported stiffened shell structure. Recently, Missaoui et al. [9] studied the
free and forced vibration of a cylindrical shell with a floor partition based on a variational
formulation in which the structural coupling is simulated using artificial spring systems.

Among various techniques to obtain the analytical solution, one of the useful approaches for
analyzing the free vibration of combined structures is the receptance method discussed by Bishop
and Johnson [10]. Azimi et al. [11] studied the natural frequencies and modes of continuous
rectangular plates using the receptance method. Huang and Soedel [12] presented the results of an
analysis of both ends of a simply supported cylindrical shell with a plate at an arbitrary axial
position. Yim et al. [13] applied also this method to analyze the free vibration of clamped-free
circular cylindrical shell with a plate attached at an arbitrary axial position. They obtained the
frequency equation of the combined system by considering the continuity condition at the shell/
plate joint, numerical results compared with these from a finite element (FE) analysis and
vibration test.

In this paper, the receptance method is employed to analyze the free vibration of simply
supported composite cylindrical combined shells with an interior rectangular plate. For two
systems of the simply supported plate and shell, the natural frequencies and mode shape functions
are obtained through the Rayleigh–Ritz procedure based on the energy principle. The classical
plate theory and Love’s thin shell theory is used. The analytical results are compared with those of
the experiment and FE analysis using a FE program, ANSYS [14]. The influences of the number
of layers, the fiber orientation angles, cross- and angle-ply laminated composite materials on the
natural frequencies of the combined shell are also presented.

2. Analytical formulation

Fig. 1 shows the geometry and the co-ordinate systems of the circular cylindrical shell with an
interior rectangular plate. The a; LS and hS are the radius, length and thickness of the shell,
respectively. The b; LP and hP are the width, length and thickness of the plate. The displacement
components of the plate and shell in each direction are presented as uP

1 ; u
P
2 ; u

P
3 and uS

1 ; u
S
2 ; u

S
3 ;

respectively. Where, superscripts S and P indicate the shell and the plate, respectively. The plate is
attached at y�1 and y�2 position of the shell based on the vertical centerline.
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2.1. Free vibration of the rectangular plate

When the rectangular plate is attached at the interior space of the shell in the axial direction,
one way of calculating the eigenvalues of the combined structure is the receptance method. With
the receptance method, vibrational characteristics of the combined structure can be calculated
from characteristics of the individual systems of the plate and the shell. Thus the natural
frequencies and mode shape functions of an interior rectangular plate with simply supported
boundary conditions are first obtained by using the classical plate theory.

Generally, Ni ¼ fNx;Ny;NxyÞ
Tand Mi ¼ fMx;My;Mxyg

T are the resultant forces and moments
of the laminated composite, and are written in terms of the middle surface extensional strains
ei ¼ fe1; e2; e12g

T and curvatures ki ¼ fk1; k2;k12g
T as [15]

Ni

Mi

� �
¼

Aij

��
Bij

�� Bij

Dij

" #
ei

ki

� �
; ð1Þ

where

½Aij ;Bij ;Cij� ¼
XN

k¼1

Z zk

zk	1

ð %QijÞkð1; z; z
2Þ dz: ð2Þ

In Eq. (2) Aij ;Bij and Dij are extensional, coupling and bending stiffness matrixes, where the
transformed reduced stiffnesses %Qij are given in terms of the reduced stiffnesses Qij ; including the
fiber orientation angles and engineering constants. N refers to the number of total layers in plate
and shell, zk and zk	1 are the distances from the reference surface to the outer and inner surface of
the kth layer as shown in Fig. 2.

The strain energy for transverse bending of a specially orthotropic laminated plate can be
written in the form [16]

Up ¼
1

2

Z b

0

Z Lp

0

½D11uP2

3;xx þ 2D12uP
3;xxw;yy þ D22uP2

3;yy þ 4D66uP2

3;xy� dx dy ð3Þ
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Fig. 1. Geometry of laminated composite cylindrical shell with an interior rectangular plate.
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and the kinetic energy is given by

Tp ¼
1

2

Z b

0

Z Lp

0

rptu
P2

3;t dx dy; ð4Þ

where

rpt ¼
XN

k¼1

rpkhpk; ð5Þ

u
p
3 represents the displacement function of the plate in the normal direction, and ð Þ;xrepresents

partial differentiation with respect to x; etc. rpk and hpk are the density and the thickness of the kth
layer of the laminated plate, respectively.

A general solution of the equation of motion, which satisfies the arbitrary boundary conditions,
can be expressed as below:

uP
3 ðx; y; tÞ ¼ Uðx; yÞejomnt

¼
Xm�

m¼1

Xn�

n¼1

AmnXmðxÞYnðyÞejomnt; ð6Þ

where Amn are undetermined coefficients, omn are the angular frequencies, and the XmðxÞ and
YnðyÞ are the beam functions satisfying the boundary conditions at the edges in the x and y
directions. Substituting Eq. (6) into Eqs. (3) and (4), we obtain the energy terms. Then by applying
the Rayleigh–Ritzs method, the total energy term can be minimized as

@

@Amn

ðTp 	 UpÞ ¼ 0
m ¼ 1; 2;y;m�;

n ¼ 1; 2;y; n�

(
ð7Þ
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and we obtain the frequency equation in the following matrix form:

Xm�

m¼1

Xn�

n¼1

½Kij
mn 	 o2

mnMij
mn�Amn ¼ 0

i ¼ 1; 2;y;m�;

j ¼ 1; 2;y; n�;

(
ð8Þ

where

Kij
mn ¼D11I3ðm; iÞJ1ðn; jÞ þ D12½I4ðm; iÞJ4ðn; jÞ þ I4ðm; iÞJ1ðn; jÞ�

þ D22I1ðm; iÞJ3ðn; jÞ þ 4D66I2ðm; iÞJ2ðn; jÞ; ð9Þ

Mij
mn ¼ rptI1ðm; iÞJ1ðn; jÞ; ð10Þ

Ii and Ji (i=1,2,3,4) are the integrals of the beam functions for the plate and given in Appendix A.
For the four edges simply supported plate, the displacement functions can be taken as

sinusoidal functions

XmðxÞ ¼ sin
mpx

Lp

; ð11aÞ

YnðyÞ ¼ sin
npy

b
: ð11bÞ

Substituting Eq. (11) into the integral terms, the mass and stiffness matrix are obtained in Eqs. (9)
and (10). Solving for the natural frequency from Eq. (8), the frequencies are given as

omn ¼
p2

L2
p

ffiffiffiffiffi
rp

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D11m4 þ 2ðD12 þ 2D66Þm2n2R2 þ D22n4R4

p
; ð12Þ

where R is the plate aspect ratio Lp=b: In each case the mode shapes corresponding to those
frequencies are

U3mnðx; yÞ ¼ sinðmpx=LpÞsinðnpy=bÞ; m; n ¼ 1; 2; 3y : ð13Þ

2.2. Free vibration of the cylindrical shell

Similar to in case of the plate, the natural frequencies and mode shape functions of the simply
supported cylindrical shell are obtained to apply the receptance method for combined structure.
Those are calculated by Rayleigh–Ritz method based on the energy principle and Love’s shell
theory.

In general, in case of symmetric laminates with multiple specially orthotropic layers, the
stiffnesses A16; A26; D16 and D26 are zero. Also, Bij are zero because of symmetry. Since the
symmetrically laminated shell with specially orthotropic in this study is considered, the strain
energy of the laminated shell can be written in the following form:

Us ¼
1

2

Z Ls

0

Z 2p

0

½A11e2x þ 2A12exey þ A22e2y þ A66e2xy

þ D11k2
x þ 2D12kxky þ D22k2

y þ D66k2
xy�a dy dx ð14Þ
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and neglecting the rotary inertia moment, the kinetic energy of the shell is as follows:

Ts ¼
1

2

Z Ls

0

Z 2p

0

rst½ð ’u
s
1Þ

2 þ ð ’us
2Þ

2 þ ð ’us
3Þ

2�a dy dx: ð15Þ

The considered cylindrical shell is simply supported at both the axial ends. The mathematical
expressions for this boundary condition are given by

uS
2 ¼ uS

3 ¼ MS
1 ¼ NS

1 ¼ 0 at x ¼ 0; LS: ð16Þ

The displacement functions which satisfies the boundary conditions at both ends are of the form

us
1ðx; y; tÞ ¼

Xm�

m¼1

Xn�

n¼1

U1mn %XmðxÞcos nyeiomnt; ð17aÞ

us
2ðx; y; tÞ ¼

Xm�

m¼1

Xn�

n¼1

U2mnXmðxÞsin nyeiomnt; ð17bÞ

us
3ðx; y; tÞ ¼

Xm�

m¼1

Xn�

n¼1

U3mnXmnðxÞcos nyeiomnt; ð17cÞ

where %Xm ¼ @Xm=@x; Uimn are the undetermined amplitude coefficients, and the m and n present a
half wave numbers in the axial and circumferential directions, respectively. The Xm are the axial
modal function satisfying the boundary conditions. One can use Eq. (11a) by replacing LP with
LS: After energy terms are obtained in Eqs. (14) and (15), by applying the Rayleigh–Ritz
procedure for the total energy, the frequency equation can be calculated as

jkij 	 o2
mnmij j ¼ 0; i; j ¼ 1; 2; 3; ð18Þ

where omn are the angular frequencies of the shell. The three natural modes that associated with
the natural frequencies at each m; n combination can be expressed as below:

Us
1mnðx; yÞ ¼ ðU1mn=U3mnÞcosðmpx=LsÞcosðnyÞ; ð19aÞ

Us
2mnðx; yÞ ¼ ðU2mn=U3mnÞsinðmpx=LsÞsinðnyÞ; ð19bÞ

Us
3mnðx; yÞ ¼ sinðmpx=LsÞcosðnyÞ: ð19cÞ

2.3. Free vibration of the combined structure

A receptance is defined [10,12,17] as the ratio of a displacement or slope response at a certain
point to a harmonic force or moment input at the same or different point. For example, the simple
case is two systems being joined through two co-ordinates as shown in Fig. 3. For system A the
displacement (or slope) amplitudes XAi ði ¼ 1; 2Þ; as functions of harmonic force (or moment)
amplitudes FAi ðj ¼ 1; 2Þ are

fXAig ¼ faijg
TfFAjg: ð20Þ
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Similarly, for system B the outputs are

fXBig ¼ fbijg
TfFBjg; ð21Þ

where aij and bij are the receptances of the shell and the plate, respectively.
When the two systems are joined and no forces (or moments) external to the two systems are

applied, it must be equal because of displacement (or slope) continuity

fFAjg þ fFBjg ¼ 0 ð22Þ

and

fXAig ¼ fXBig: ð23Þ

Combining these equations and applying the definitions of the receptance gives

½aij þ bij�fFAjg ¼ 0: ð24Þ

For natural modes where fFAjga0; the natural frequencies of combined structure can be found
from

jaij þ bij j ¼ 0: ð25Þ

The term receptance is defined by the ratio of the response of a structure to the input function.
Thus, if the input forcing function is defined, the response of the system and the receptance can be
obtained. Once the receptances are calculated, the frequency equation can be derived by
considering the continuity conditions at the joints. Fig. 4 shows the cross-sectional view of the
displacements and the slopes at joining points due to the dynamic transverse line loads and line
moments around the shell exerted by the motion of vibration.

By neglecting the damping of the system, the displacements of a structure subjected to dynamic
loading can be expressed by the dynamic forcing function and the mode components of the plate
and shell as an infinite series [17]

uiðx; y; tÞ ¼
XN
m¼1

XN
n¼1

F�
mn

ðo2
mn 	 o2Þ

Uimnðx; yÞejot; ð26Þ

where omn is the angular frequency of two independent systems which are calculated by Love’s
shell theory and classical plate theory. Uimn represents the mode components of the plate and the
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Y.-S. Lee et al. / Journal of Sound and Vibration 265 (2003) 795–817 801



shell in three principal directions. The dynamic forcing function F�
mn can be obtained in Eq. (27),

and the displacements of the plate and shell in Eq. (26) will be used later to calculate the
receptances.

F�
mn ¼

1

rhNmn

Z 2p

0

Z LS

0

q�
i Uimna dx dy; ð27Þ

Nmn ¼
Z 2p

0

Z LS

0

U2
imna dx dy: ð28Þ

The input forcing functions, q�i ði ¼ 1; 2; 3Þ are the forces applied at two joints in the axial,
circumferential and transverse normal directions.

In case of the rectangular plate attached at (x; y�1) and (x; y�2) positions of the cylindrical shell,
the transverse dynamic excitation exerted at the joints due to the constraint of the displacements
of the shell by the plate can be assumed as sinusoidal and Dirac delta function, d:

q�
3ðx; y

�; tÞ ¼ f �
i ðx; y

�; tÞ ¼ FS
i sinð %mpx=LSÞdðy	 y�i Þe

jot; i ¼ 1; 2; ð29Þ

where f �
1 and f �

2 are the transverse forcing functions applied on the shell at two joints in the
circumferential direction. The transverse mode shape of the shell satisfying the simply supported
boundary conditions is used as Eq. (19c) from neglecting the components in axial and
circumferential directions in Eq. (19).

Substituting Eqs. (19c) and (27) into Eq. (26), in case of %m ¼ m the dynamic forcing function
F�

mn is found to be

F�
mn ¼ F�

mnjF1
þ F�

mnjF2
; ð30Þ

where

F�
mnjF1

¼
FS
1 LS

2rShSNmn

cos ny�1; F�
mnjF2

¼
FS
2 LS

2rShSNmn

cos ny�2; ð31Þ
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F�
k jF1

is the dynamic forcing function with only F1 applied and F�
k jF2

is one with only F2 applied.
Evaluation of Eq. (28), Nmn yields

Nmn ¼ LSap=2: ð32Þ

Using Eqs. (26) and (30), the dynamic displacement of the shell can be represented using the mode
summation as

uS
3 ðx; y; tÞ ¼

LS

2rShSNmn

XN
m¼1

XN
n¼1

ðFS
1 cos ny�1 þ FS

2 cos ny�2Þ
ðo2

mn 	 o2Þ
sinðmpx=LSÞcos nyejot: ð33Þ

The circumferential slope of the shell can be obtained from Eq. (33) by differentiation with respect
to the circumferential co-ordinate y:

cS
y ðx; y; tÞ ¼ 	

LS

2rShSNmn

XN
m¼1

XN
n¼1

nðFS
1 cos ny�1 þ FS

2 cos ny�2Þ
ðo2

mn 	 o2Þ
sinðmpx=LSÞsin nyejot: ð34Þ

Next, the dynamic moment loading exerted at two joints due to the constraint by the plate can
be expressed as

Ty ¼ m�
i ðx; y

�; tÞ ¼ MS
i sinð %mpx=LSÞdðy	 y�i Þe

jot; i ¼ 1; 2; ð35Þ

where m�
1; m�

2 are the moment functions applied at two joints in the circumferential position,
y ¼ y�1 and y�2; respectively. The forcing functions due to the moment loading can be obtained
from Ref. [17] as

F�
mn ¼

1

rhNmn

Z 2p

0

Z LS

0

U3mn
1

a

@ðTyÞ
@y

��� �
a dx dy: ð36Þ

Here, Nmn is the same as in Eq. (32). The displacement of the shell by moment loading can be
obtained from Eqs. (26) and (36)

uS
3 ðx; y; tÞ ¼

LS

2rShSNmn

XN
m¼1

XN
n¼1

nðMS
1 cos ny�1 þ MS

2 cos ny�2Þ
ðo2

mn 	 o2Þ
sinðmpx=LSÞcos nyejot: ð37Þ

Using Eq. (37), the slope of shell by moment loading at the joints can be calculated as

cS
y ðx; y; tÞ ¼ 	

LS

2rShSNmn

XN
m¼1

XN
n¼1

n2ðMS
1 cos ny�1 þ MS

2 cos ny�2Þ
ðo2

mn 	 o2Þ
sinðmpx=LSÞsin nyejot: ð38Þ

As a similar manner, one can consider the receptances for a rectangular plate simply supported
at all edges with forces and moments exerted at two joints, ðx; y�

1Þ and ðx; y�
2Þ: In this case, the

dynamic excitation exerted at the joints due to the constraint of the displacements of the plate by
the shell can be assumed as Eq. (39) using the Dirac delta and sinusoidal function.

f �
i ðx; y

�; tÞ ¼ FP
i sinð %mpx=LPÞdðy 	 y�

i Þe
jot; i ¼ 1; 2: ð39Þ

Also, the mode shape function expressing the in-plane displacement of the simply supported plate
can be assumed as

UP
2mn ¼ sinðmpx=LPÞcosðnpy=bÞ: ð40Þ
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Thus, the displacement of the plate can be expressed as below:

uP
2 ðx; y; tÞ ¼

2

rPhPb

XN
m¼1

XN
n¼1

fFP
1 cosðnpy�1=bÞ 	 FP

2 cos ðnpy�2=bÞg
ðo2

mn 	 o2Þ
cosðnpy=bÞsin ðmpx=LPÞejot: ð41Þ

To obtain the slope of a simply supported rectangular plate by edge moments, the transverse
mode shape function can be used as that given in Eq. (19c). The periodic line moments excited at
the joints, ðx; y�

1Þ and ðx; y�
2Þ can be expressed as below:

mP
i ðx; y

�; tÞ ¼ MP
i sinð %mpx=LPÞdðy 	 y�i Þe

jot; i ¼ 1; 2: ð42Þ

The transverse displacement of the plate by dynamic moments is

uP
3 ðx; y; tÞ ¼ 	

2p
rPhPb2

XN
m¼1

XN
n¼1

nfMP
1 cos ðnpy�1=bÞ 	 MP

2 cos ðnpy�2=bÞg
ðo2

mn 	 o2Þ

� sin ðnpy=bÞsin ðmpx=LPÞejot: ð43Þ

The slope of the plate in the width direction by dynamic moments can be obtained from Eq. (43)
by differentiation with respect to the co-ordinate, y:

cP
2 ðx; y; tÞ ¼ 	

2p2

rPhPb3

XN
m¼1

XN
n¼1

n2fMP
1 cos ðnpy�1=bÞ 	 MP

2 cos ðnpy�
2=bÞg

ðo2
mn 	 o2Þ

� cosðnpy=bÞsin ðmpx=LPÞejot: ð44Þ

Finally, the receptances of the shell and the plate can be calculated using the definition of a
receptance method, the displacements (and slopes) and the line forces (and moments), and are
defined as following Eqs. (45) and (46), respectively,

að2i	1Þð2j	1Þ ¼
uS
3iðx; y

�
i ; tÞjFj

fj

; að2iÞð2j	1Þ ¼
cS
yiðx; y

�
i ; tÞjFj

fj

;

að2i	1Þð2jÞ ¼
uS
3iðx; y

�
i ; tÞjMj

mj

; að2iÞð2jÞ ¼
cS
yiðx; y

�
i ; tÞjMj

mj

; i; j ¼ 1; 2; ð45Þ

bð2i	1Þð2j	1Þ ¼
uP
2iðx; y

�
i ; tÞjFj

ð	1Þðj	1Þfj

; bð2iÞð2j	1Þ ¼
cP

2iðx; y
�
i ; tÞjFj

ð	1Þðj	1Þfj

;

bð2i	1Þð2jÞ ¼
uP
2iðx; y

�
i ; tÞjMj

ð	1Þðj	1Þmj

; bð2iÞð2jÞ ¼
cP

2iðx; y
�
i ; tÞjMj

ð	1Þðj	1Þmj

; i; j ¼ 1; 2: ð46Þ

In this study, only the slope of the plate in the width direction and the normal displacement of the
shell due to dynamic forces are considered. The normal displacement of the plate and the slope of
the shell in the circumferential direction due to dynamic moments are taken into consideration
because the other components of displacement can be ignored. By applying the continuity
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condition at the joints, the frequency equation can be expressed as

a11 þ b11 a12 þ b12 a13 þ b13 a14 þ b14

a21 þ b21 a22 þ b22 a23 þ b23 a24 þ b24

a31 þ b31 a32 þ b32 a31 þ b33 a34 þ b34

a41 þ b41 a42 þ b42 a43 þ b43 a44 þ b44

2
6664

3
7775

F1

M1

F2

M2

8>>><
>>>:

9>>>=
>>>;

¼ 0: ð47Þ

For the rectangular plate, neglecting the in-plane displacements due to moments, (uP
2 =M) give

b12 ¼ b14 ¼ b32 ¼ b34 ¼ 0: Similarly, the slopes in the normal direction due to forces (cP
2 =F ) are

also negligible, that is, b21 ¼ b23 ¼ b41 ¼ b43 ¼ 0: Thus, from the condition of having non-trivial
solution of Eq. (47), the frequency equation of the combined shell can be obtained as the
following form:

a11 þ b11 a12 a13 þ b13 a14
a21 a22 þ b22 a23 a24 þ b24

a31 þ b31 a32 a31 þ b33 a34
a41 a42 þ b42 a43 a44 þ b44

���������

���������
¼ 0: ð48Þ

In Eq. (48) the receptances of the shell and the plate can be calculated as the ratio of a
displacement (or slope) response at two joints to a harmonic force (or moment) input from
Eqs. (45) and (46), and given in Appendix B.

3. Experiments

The combined shell specimens with an interior plate at the center of the shell are fabricated as
plain weave glass/epoxy composites with ½013=74513=90

1

3�S stacking sequence. Table 1 presents the
geometrical data of the composite combined shell, and the shell has the same length and thickness
as the plate. The plate is attached at the center (y�1 ¼ 901) of the shell and the same material
properties as those of the shell. The material properties of the glass fiber reinforced plastic
(GFRP) composites are obtained by uniaxial tensile tests using a strain gage and a universal
testing machine, and as following:

E1 ¼ E2 ¼ 26:2l GPa; G12 ¼ 4:9l GPa; r ¼ 1880 kg=m3 u12 ¼ 0:12:

Fig. 5 shows the schematic view of the supporting devices to realize the simply supported
boundary conditions of the shell and the plate at both ends. The cylindrical shell is supported by
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Table 1

Dimensions (mm) of combined composite shells

Material Shell Plate

Length (LS) Radius (a) Thickness (hS) Length (LP) Width (b) Thickness (hP)

GFRP 360 109 3.5 360 218 3.5

Y.-S. Lee et al. / Journal of Sound and Vibration 265 (2003) 795–817 805



using 30 bolts of 10mm diameter with 121 equal spacing in the circumferential direction. To
support the interior plate, the circular jig as shown in Fig. 5 is used, and it is made of acrylic with
10mm thickness. The inside edge of the shell is supported by the outside edge of the circular jig,
and the U groove in the middle supports the edge of an interior plate and constrains the
displacements in the transverse direction. The circular jig has also open spaces to attach the
accelerometer and to excite the plate using the impact hammer.

The principal equipments used in the experiment are an accelerometer (PCB 353B16), an impact
hammer (PCB 086B03), a power supply amplifier (PCB 480A21) and a signal analyzer, etc. The
vibration data are transmitted to the eight channel dynamic signal analyzer of Spectral Dynamics
Inc., BOBCAT system connected by a Pentium PC allow data to be collected easily and
transferred directly STAR Modal software. The experimental data are averaged with at least eight
root mean square average schemes. The mode shapes are determined with measured
displacements at total 52 grid points of the plate and the shell. The schematic diagram for the
experimental modal testing is shown in Fig. 6.
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Fig. 5. Schematic view of supporting devices to realize simply supported boundary conditions.

Fig. 6. Schematic diagram for the modal test.
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4. Results and discussion

To check the validity of the analytical approach results using the receptance method, the
frequencies are compared with those from the experiment and a FE analysis. Table 2 presents the
first seven natural frequencies of analytical, experimental and ANSYS results of the GFRP plain
weave composites cylindrical shell with an interior plate at the center of the shell. The
fundamental frequency of the combined shell is 234.5Hz, and it shows the first bending mode of
the interior plate. As shown in Table 2, the deviation between analytical and experimental results
is about 4.3% for lowest fundamental frequency, and less than 7% for the other frequencies.
Although the discrepancies between three methods are slight, the cause of the deviation is due to
differences between ideal and actual boundary conditions of the plate and the shell in the
experiment, and the relative coarseness of the meshes in the FE analysis. As a result, the analysis
results are quite well agreed with those from the experiment and the FE analysis, showing the
validity of the current formulation.

Fig. 7 shows the typical experimental and ANSYS mode shapes for the combined shell of the
same model as listed in Table 2. These figures show a cross-section of the combined shell in the
longitudinal and circumferential directions. The lowest frequency corresponds to a bending mode,
which is basically governed by an interior plate motion. In case of the combined shell with the
plate at the center of the shell the first four frequencies show the transverse bending modes of an
interior plate with negligible motion of the shell. The shell mode appears first in the sixth
frequency (750Hz), in which one notices a slight deformation of the plate and a strong motion of
the shell.

In following numerical results the effects of geometrical parameters (LS=a; a=hS) of the shell,
stacking sequences and the number of layers (N), fiber orientation angles (Y) and orthotropic
ratios (E1=E2) are investigated for cross- and angle-ply laminated combined shells. In this study
the shell and the plate have the same geometrical data (LS ¼ LP; hS ¼ hP ¼ 2 mm) and the plate is
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Table 2

Comparison of the natural frequencies of analytical, experimental and ANSYS results of the GFRP plain weave

composites cylindrical shell with interior plate at y�1 ¼ 901 location

Modea Method

Natural frequency (Hz)

Analysis Experiment FEM

First 234.5 245.0 241.6

Second 344.3 335.0 352.8

Third 547.2 540.0 547.5

Fourth 579.2 610.0 593.6

Fifth 696.0 660.0 614.5

Sixth 774.1 750.0 760.3

Seventh 804.5 810.0 803.5

aFrequency ascending order.
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Fig. 7. Experimental and ANSYS mode shapes of the simply supported plain weave composites cylindrical shell with

an interior plate at y�1 ¼ 901 location.
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attached at the center, y�1 ¼ 901 of the shell. The considered stacking sequences are a four layered,
cross-ply ½901=01�S and angle-ply ½Y1=	Y1�S cylindrical combined shells with symmetric
laminates about the middle surface. Two composite materials from Ref. [18] are used and those
properties are listed in Table 3, where E1=E2 ¼ 17:57 for CFRP, E1=E2 ¼ 4:67 for GFRP
composite materials.

Table 4 shows the influence of stacking sequences and the number of layers on the fundamental
frequencies of CFRP symmetric cross-ply cylindrical combined shells with LS=a=3, a=hS=50
and hS=2mm. The thickness of one layer is varied in proportion to 2=N as N increases here. For
two kinds of stacking sequences, the stacking sequence ½901=01y�S that is laminated by 901 angle
at the outer surface has more high frequencies than ½01=901y�S: The fundamental frequency of
combined shell for N ¼ 3 is shown to be the largest deviation about 56% between two stacking
sequences. As listed in Table 4, the simply supported plate and shell with stacking sequence
½901=01y�S are also higher frequencies than in case of ½01=901y�S: This phenomenon is because
the number of 901 layer due to the symmetric stacking sequence ½901=01=901� is more than that of
stacking sequence ½01=901=01�; and it has an influence on the stiffness of the combined shell in the
width (or circumferential) directions. But the deviations of frequencies between two stacking
sequences decrease as N increases. This results show that the frequencies of the combined shell
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Table 3

Elastic properties of various composite materials

Properties Unit GFRP[18] CFRP[18]

E1 GPa 38.6 181.0

E2 GPa 8.27 10.3

G12 GPa 4.14 7.17

r kg/m3 1800 1600

n12 — 0.45 0.26

E1=E2 — 4.67 17.57

Table 4

Influences of stacking sequences and the number of layers on the frequencies of CFRP symmetric cross-ply cylindrical

combined shells; LS=a ¼ 3; a=hS ¼ 50

Na Stacking sequence Combined shell Plate only Shell only

3 [0/90/0] 179.0 146.4 1014.0

5 [0/90/0/90/0] 237.2 170.1 1156.2

7 [0/90/0/90/0/90/0] 259.9 180.6 1217.6

9 [0/90/0/90/0/90/0/90/0] 272.1 186.1 1250.0

15 [0/90/y/90/0] 288.5 194.0 1281.3

3 [90/0/90] 403.4 249.7 1353.1

5 [90/0/90/0/90] 372.2 234.1 1335.0

7 [90/0/90/0/90/0/90] 356.7 226.5 1325.4

9 [90/0/90/0/90/0/90/0/90] 347.3 222.0 1319.2

15 [90/0y/0/90] 334.0 215.0 1310.0

aN=the number of layers.

Y.-S. Lee et al. / Journal of Sound and Vibration 265 (2003) 795–817 809



have significantly an effect on the lamination angle when the N is small, and the influence of 01or
901 layers regardless of the stacking sequences decreases as the number of layers increases.

Fig. 8 presents the variation of fundamental frequencies for a four-layered, CFRP cross-ply
½901=01�S cylindrical combined shell with various length-to-radius ratiosðLS=aÞ: The shell can be
considered as short shell ðLS=ao5Þ and the ratios are varied in the range from 1 to 5. The results
are presented those of two individual structures before combination as well as the combined
system together. Parenthesized numbers of the shell frequencies in Fig. 8 indicate the
circumferential wave number (n) of the shell for the axial mode, m ¼ 1: The fundamental
frequencies for the combined shell decrease rapidly for the small LS=a ratio. The circumferential
wave number on the fundamental frequency decreases as the length of the shell increases. This is
because the stiffness of the shell in the circumferential direction increases due to the increment of
the shell length. That is, the circumferential mode, n ¼ 4 is changed as n ¼ 3 when the LS=a
increases. Also the natural frequencies of the plate only decrease with decreasing the LS=a ratio,
but if the LS=a is about lager than 2.5, the frequencies of the plate only are not affected with the
plate length. From the comparison of the results between two individual models before
combination, the fundamental frequency of the combined system depends on the frequency of the
plate mode, and is about 30% higher than that of the plate only.

The analysis results of the CFRP cross-ply ½901=01�S combined shell with various radius-to-
thickness ratios ða=hSÞ are shown in Fig. 9. The fundamental frequencies of the combined shell
decrease as the a=hS ratio increases. In case of the a=hS=30, the frequency has a middle value of
those between the plate and the shell with simply supported boundary conditions. But when the
a=hS ratio is large, the frequency of the combined shell is nearly the same with that of the plate
only. This behavior is because the width of the plate due to the increment of the shell radius
increases, so the stiffness of the interior plate is relatively weakened due to the variation of the
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Fig. 8. Variation of fundamental frequencies for a four-layered, CFRP cross-ply ½901=01�S combined shell with length-

to-radius ratiosðLS=aÞ; a=hS ¼ 50:
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geometrical dimension. The similar phenomena appear also on the behavior of the shell only. The
circumferential mode of the shell is changed as n ¼ 4 because the stiffness of the shell is weakened
by increasing the radius.

Fig. 10 shows the influence of fiber orientation angles and LS=a ratios of a four-layered, CFRP
angle ply ½Y1=	Y1�S cylindrical combined shell on the fundamental frequencies. When the shell
is short (LS=a=1), the combined shell has the largest frequency at Y ¼ 01; and those decrease as
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the Y increases. This means that for the fixed radius (a=hS=50) the stiffness of the combined shell
depends on the variation of the length and the lamination angle,Y ¼ 01: Thus, the frequency has
largely an influence on the variation of the shell length at Y ¼ 01 in the axial direction. However,
as the length of the shell increases, the fiber orientation angles showing the maximum frequency
are changed from 01 to 901; and when the LS=a ratios are larger than 3, the highest frequencies
occur at the Y ¼ 901 because of the weaken of the stiffness in the axial direction.

The influence of fiber orientation angles and a=hS ratios of a four-layered, CFRP angle ply
½Y1=	Y1�S combined shell is shown in Fig. 11. The frequencies with increasing the a=hS ratios
decrease as the radius of shell increases because the width of the interior plate becomes large
together. The combined shell in case of the a=hS ¼ 30 has the largest frequency at Y ¼ 901; and
those increase rapidly with increasing the Y: The frequencies with a=hS ratios are changed more at
901 than 01 contrary to the trend in Fig. 10. This is because the variation of the shell radius is more
sensitive on the frequencies of the combined shell at Y ¼ 901: But as the a=hS ratios decrease, the
fiber orientation angle showing the maximum frequency is changed from 01 to 901 as shown in
Fig. 10.

Figs. 12 and 13 show the influence of fiber orientation angles on the fundamental frequencies of
GFRP and CFRP angle-ply ½Y1=	Y1�S combined shell with LS=a=2 and a=hS=50,
respectively. The frequency of the plate only is the highest value at Y ¼ 451 because the interior
plate has the aspect ratio, LP=b=1. According to the increment of the Y; the frequencies of the
shell only decrease after the increment, and are the highest values at Y ¼ 601 for GFRP and
Y ¼ 451 for CFRP material. The variation of the frequencies with the lamination angle is larger
CFRP than GFRP material with small E1=E2: The frequencies of the combined shell are of a
slightly higher value than those of the interior plate only, and the highest frequency is found at
Y ¼ 601: When the Y is smaller than 451; the difference of the fundamental frequency between the
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plate only and the combined shell is small, but is increased as the Y increase. This reason is
because the increment of the stiffness of the shell due to the increment of the lamination angle has
an effect on the frequency of the combined shell. Also the lager the orthotropic modulus ratio,
E1=E2 is, the larger the influence of fiber orientation angles on the natural frequencies of the
combined shell is due to the variation of the stiffness of the interior plate and the shell in axial
direction, although the influence of the E1=E2 ratio is not shown in detail here.
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5. Conclusions

A frequency equation for the analysis of free vibration of laminated composite cylindrical shells
with an interior rectangular plate is formulated using the receptance method. Numerical results of
composite combined shells with simply supported boundary conditions are presented and are
quite well agreed with those from the experiment and the FE analysis. When the line load and
moment applied along the joints are assumed as sinusoidal function, the continuity conditions at
the plate/shell joints are proven to be satisfied. The influence of various parameters on the
frequency is also investigated in this paper. The fundamental frequency of the combined shell is
highly dependent on the frequency of an interior rectangular plate showing the first bending
mode. For two kinds of cross-ply laminate, the stacking sequence, ½901=01y�S that is laminated
by 901 angle at the outer surface shows more high frequencies than in case of the ½01=901y�S: As
effects of geometrical parameters of the shell, when LS=a and a=hS ratios increase, the frequencies
decrease due to the variation of the stiffness. Also when the shell is short, the frequencies of the
combined shell are the highest values at the fiber orientation angle, Y ¼ 01; but the lamination
angle showing the maximum frequency is changed from 01 to 901as the length of the shell
increases.

Appendix A

The integrals of the beam functions for the plate are given as

I1ðm; nÞ ¼
Z LP

0

XmXn dx; I2ðm; nÞ ¼
Z LP

0

Xm;xXn;x dx;

I3ðm; nÞ ¼
Z LP

0

Xm;xxXn;xx dx; I4ðm; nÞ ¼
Z LP

0

XmXn;xx dx; ðA:1Þ

J1ðm; nÞ ¼
Z b

0

YmYn dy; J2ðm; nÞ ¼
Z b

0

Ym;yYn;y dy;

J3ðm; nÞ ¼
Z b

0

Ym;yyYn;yy dy; J4ðm; nÞ ¼
Z b

0

YmYn;yy dy: ðA:2Þ

Appendix B

The receptances of the shell in Eq. (48) are given as

a11 ¼
uS
31ðx; y

�
1; tÞjF1

f S
1

¼

FS
1 LS

2rShSNmn

P
N

m¼1

P
N

n¼1

cos ny�1
ðo2

mn 	 o2Þ
sin ðmpx=LSÞcos nyejot

FS
1 sinð %mpx=LSÞejot

¼SRC cos ny�1 cos ny�1; ðB:1Þ
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where if one lets

SRC ¼
LS

2rShSNmn

XN
m¼1

XN
n¼1

1

ðo2
mn 	 o2Þ

;

a31 ¼
uS
32ðx; y

�
2; tÞjF1

f S
1

¼ SRC cos ny�1 cos ny�2; ðB:2Þ

a13 ¼
uS
31ðx; y

�
1; tÞjF2

f S
2

¼ SRC cos ny�1 cos ny�2; ðB:3Þ

a33 ¼
uS
32ðx; y

�
2; tÞjF2

f S
2

¼ SRC cos ny�2 cos ny�2; ðB:4Þ

a21 ¼
cS
y1ðx; y

�
1; tÞjF1

f S
1

¼ 	SRC n cos ny�1 sin ny�1; ðB:5Þ

a41 ¼
cS
y2ðx; y

�
2; tÞjF1

f S
1

¼ 	SRC n cos ny�1 sin ny�2; ðB:6Þ

a23 ¼
cS
y1ðx; y

�
1; tÞjF2

f S
2

¼ 	SRC n cos ny�2 sin ny�1; ðB:7Þ

a43 ¼
cS
y2ðx; y

�
2; tÞjF2

f S
2

¼ 	SRC n cos ny�2 sin ny�2; ðB:8Þ

a12 ¼
uS
31ðx; y

�
1; tÞjM1

mS
1

¼ SRC n sin ny�1 cos ny�1; ðB:9Þ

a32 ¼
uS
32ðx; y

�
2; tÞjM1

mS
1

¼ SRC n sin ny�1 cos ny�2; ðB:10Þ

a14 ¼
uS
31ðx; y

�
1; tÞjM2

mS
2

¼ SRC n sin ny�2 cos ny�1; ðB:11Þ

a34 ¼
uS
32ðx; y

�
2; tÞjM2

mS
2

¼ SRC n sin ny�2 cos ny�2; ðB:12Þ

a22 ¼
cS
y1ðx; y

�
1; tÞjM1

mS
1

¼ 	SRC n2 sin ny�1 sin ny�1; ðB:13Þ

a42 ¼
cS
y2ðx; y

�
2; tÞjM1

mS
1

¼ 	SRC n2 sin ny�1 sin ny�2; ðB:14Þ
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a24 ¼
cS
y1ðx; y

�
1; tÞjM2

mS
2

¼ 	SRC n2 sin ny�2 sin ny�1; ðB:15Þ

a44 ¼
cS
y2ðx; y

�
2; tÞjM2

mS
2

¼ 	SRC n2 sin ny�2 sin ny�2: ðB:16Þ

Similarly, the receptances of the plate are defined as

b11 ¼
uP
21ðx; y

�
1; tÞjF1

f P
1

¼

2FP
1

rPhPb

P
N

m¼1

P
N

n¼1

cos ðnpy�1=bÞ
ðo2

mn 	 o2Þ
cos ðnpy=bÞsinðmpx=LPÞejot

FP
1 sinð %mpx=LPÞejot

¼ 	 PRC; ðB:17Þ

where if one lets

PRC ¼
2

rPhPbo2
;

b31 ¼
uP
22ðx; y

�
2; tÞjF1

f P
1

¼ PRC; ðB:18Þ

b13 ¼ 	
uP
21ðx; y

�
1; tÞjF2

f P
2

¼ 	PRC; ðB:19Þ

b33 ¼ 	
uP
22ðx; y

�
2; tÞjF2

f P
2

¼ PRC; ðB:20Þ

b22 ¼
cP

21ðx; y
�
1; tÞjM1

mP
1

¼ 	PRC
op
b

� �2XN
m¼1

XN
n¼1

n2

ðo2
mn 	 o2Þ

; ðB:21Þ

b42 ¼
cP

22ðx; y
�
2; tÞjM1

mP
1

¼ PRC
op
b

� �2XN
m¼1

XN
n¼1

n2

ðo2
mn 	 o2Þ

; ðB:22Þ

b24 ¼ 	
cP

21ðx; y
�
1; tÞjM2

mP
2

¼ 	PRC
op
b

� �2XN
m¼1

XN
n¼1

n2

ðo2
mn 	 o2Þ

; ðB:23Þ

b44 ¼ 	
cP

22ðx; y
�
2; tÞjM2

mP
2

¼ PRC
op
b

� �2XN
m¼1

XN
n¼1

n2

ðo2
mn 	 o2Þ

: ðB:24Þ
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